
TrixiCUDA.jl: CUDA Support for Solving
Hyperbolic PDEs on GPUs

Huiyu Xie (@huiyuxie)
JuliaCon 2025

PDEs with GPU Acceleration

MFEM: Scalable Finite Element Discretization Library (C++)

- Supports CUDA, HIP, OCCA, etc.
- Heavily relies on batched matrix operations (e.g., cuBLAS) for

acceleration.

deal.ll: Library for solving PDEs with adaptive finite elements (C++)

- Supports CUDA and SYCL via Taskflow.
- Provides custom kernels for core algorithms, including merge,

reduce, sort, and matrix multiplication.

https://github.com/mfem/mfem
https://github.com/dealii/dealii
https://github.com/taskflow/taskflow

Julia Programming and CUDA

Why Julia?

- Scientific Computing: Good FP, arrays, and parallelism.
- Users: Easy to program (compared to C++).
- Developers: JuliaGPU, rapid development, strong ecosystem.

Why CUDA?

- Mature support through CUDA.jl.
- Fine-grained control over kernel optimization.
- Strong package ecosystem (e.g., cuBLAS).

https://github.com/JuliaGPU/CUDA.jl

Brief Introduction: TrixiCUDA.jl

Acceleration Sketch:

- Potential acceleration beyond matrix
operations.

- Requires custom kernels due to flux
computations, etc. in PDE solvers.

- Semidiscretization is heavy in
computation but highly parallelizable.

SciML

Trixi-Framework

JuliaGPU

Trixi-GPU

Semidiscretization in PDEs

What is semidiscretization?

- Semidiscretization is a high-level description of spatial discretizations
specialized for PDEs.

How to solve PDEs?

- Spatial discretization (i.e., semidiscretization) first, which reduces PDEs
into a system of ODEs.

- Time integration is applied afterward to solve the ODE system.

Workflow Skeleton
Core acceleration happens
in phase 3.

6

PDE Problem ODE Problem

semi=SemidiscretizationH
yperbolic(...)

Pack equations, mesh, solver,
initial and boundary conditions,
and possible source terms.

ode=semidiscretize(...)

Phase 1

Semidiscretization is wrapped,
turning the PDE problem into an
ODE problem.

Phase 2
sol=OrdinaryDiffEq.solve
(...)

Solve ODE problem through a time
integration loop. Semidiscretization
takes effect here.

Phase 3

ODEProblem(rhs!, u0_ode, tspan, semi)

GPU Kernel Optimization

Common optimization methods:

- Maximizing occupancy
- Enabling coalesced global memory access
- Minimizing control divergence
- Tiling of used data with shared memory (avoid bank conflicts)
- Privatization (works well when there are plenty of atomic operations)
- Thread coarsening

Check out one example here if you are interested!

https://github.com/trixi-gpu/TrixiCUDA.jl/pull/107

Takeaways about TrixiCUDA.jl

- Julia: Intuitive and accessible for both beginners and experts in scientific
computing.

- CUDA: CUDA acceleration for semidiscretizations in PDE solvers.
- Precision: Support both single-precision and double-precision

floating-point operations.
- Optimization: Specialized optimizations beyond matrix operations.
- Expansion: Researchers can add new features/algorithms to Trixi.jl and

easily get GPU acceleration in TrixiCUDA.jl.

https://github.com/trixi-framework

Big Open Problem

GPU Libraries like cuBLAS, cuSPARSE, cuSOLVER, cuDNN, cuFFT, etc.

Why no good PDE package?

- Too Complex and requires huge effort due to various problem types and
GPU architectures (profiling/benchmark-based optimization is not good
enough).

How to give a fast implementation (parallel and optimized) based on the
complexity?

Q&A Session

Feel free to try some existing examples to solve the PDEs with GPU
acceleration.

Any questions or concerns so far?

https://github.com/trixi-gpu/TrixiCUDA.jl/tree/main/examples

Acknowledgment

Project Advisors

- Prof. Hendrik Ranocha (Johannes Gutenberg University Mainz, Germany)
- Prof. Jesse Chan (Rice University, U.S.)
- Prof. Michael Schlottke-Lakemper (University of Augsburg, Germany)

Upstream Developers

- Tim Besard (Lead Developer, JuliaGPU)
- Christopher Rackauckas (Lead Developer, SciML)

Julia Community

References

